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Abstract At the beginning the paper describes the basic properties of finite field
arithmetic and elliptic curve arithmetic over prime and binary fields. Then it discusses
the elliptic curve discrete logarithm problem and its properties. We study the Baby-
Step, Giant-Step method, Pollard’s rho method and Pohlig–Hellman method, known
as general methods that can exploit the elliptic curve discrete logarithm problem,
and describe in detail attack experiments using these methods over prime and binary
fields. Finally, the paper discusses the expected running time of these attacks and
suggests the strong elliptic curves that are not vulnerable to these attacks.

1 Introduction

Elliptic Curve Cryptosystem (ECC) is an alternative approach for implementing
Public Key Cryptosystem (PKC) in which each entity connecting in the public com-
munication channel generally has a couple of keys, a public key and a private key
to perform cryptographic operations such as encryption, decryption, signing, verifi-
cation, and authentication. The private key must be kept secret but the correspond-
ing public key is distributed to all entities connecting in the public communication
channel [1]. ECC can be applied for providing the security services: confidentiality,
authentication, data integrity, non-repudiation, and authenticated key exchange.

These days, ECC becomes a major in the industry of information and network
security technology. It substitutes other public key cryptosystems such as RSA and
DSA. It becomes the industrial standard as a consequence of an increase in speed
and a decrease in power consumption during implementation as a result of less mem-
ory usage and smaller key sizes. Its security depends on the complexity of solving
the Elliptic Curve Discrete Logarithm Problem (ECDLP). Although the ECDLP is

N. N. Hla (B) · T. M. Aung
University of Computer Studies, Yangon (UCSY), Yangon, Myanmar
e-mail: ni2hla@ucsy.edu.mm

T. M. Aung
e-mail: tma.mephi@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
A. Abraham et al. (eds.), Emerging Technologies in Data Mining and Information
Security, Advances in Intelligent Systems and Computing 755,
https://doi.org/10.1007/978-981-13-1951-8_60

667

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1951-8_60&domain=pdf


668 N. N. Hla and T. M. Aung

thought to be a difficult problem, it has not stopped attackers attempting to attack on
ECC. Several attacks have been created, experienced and analyzed by mathemati-
cians over the years, to discover defects in ECC. Some attacks have done partially
well, but others have not.

The idea of this paper is to apply the knowledge of the generalmethods of attacking
the ECDLP in attempting to select powerful elliptic curves over prime and binary
fields under large integer. The structure of this paper is as follows. TheSect. 2 includes
finite field arithmetic over prime and binary fields and their properties. In Sect. 3, we
discuss elliptic curve arithmetic over prime and binary fields, its geometric properties,
the ECDLP and its properties. The Sect. 4 describes in details the general methods
of attacking on the elliptic curve discrete logarithm problem. In Sect. 5 we discuss
attack experiments on the ECDLP over prime and binary fields. Finally, in Sect. 6
we conclude our discussion by describing time complexity of the attacking methods
and by suggesting powerful elliptic curves for best secure implementation of ECC.

2 Finite Field Arithmetic

A finite field, generally signified by F, is a field which consists of a finite number of
elements. Finite Fields are applied to the rational number system, the real number
system and the complex number system. They contain a set of elements together
with two arithmetic operations: addition signified by the symbol+andmultiplication
signified by the symbol, that satisfy the typical arithmetic properties:

• (F,+) is an additive group with operation by+and identity element by 0.
• (F\{0},) is a multiplicative group with operation by. and identity element by 1.
• Elements of finite group hold the distributive law: (x+y) · z� (x · z)+ (y · z) for
all x, y, z ∈ F

When the number of elements in the field is finite, then the field is said to be finite
[2]. Galois open that the elements in the field to be finite and the number of elements
should be pm, where p is a prime number called the characteristic of the field and
m is a positive integer. The finite fields are generally called Galois fields and also
signified by GF(pm). When m=1, then the field GF(p) is called a prime field. When
m ≥2, then the field GF(pm) is called an extension field. The number of elements in
a finite field is called the order of the field. Any two fields are isomorphic when their
orders are the same [3].

2.1 Field Operations

Finite field F performs two arithmetic operations, addition andmultiplication. How-
ever, the subtraction of field elements is defined in the expressions of addition oper-
ation. For instance, let x, y ε F, x −y is defined as x +(−y), in this case −y is called
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additive inverse of b such that y+ (−y)=0. Correspondingly, the division of field
elements is defined in the expression of multiplication operation. For instance, let x,
y ε F with y ��0, x/y is defined as x · y−1, in this case y−1 is called the multiplicative
inverse of y such that y · y−1 �1 [2].

Prime Field. A finite field of prime order p is called prime field signified by
GF(p). It contains a set of integer elements modulo p, {0,1,2,…, p−1} with additive
and multiplicative groups performed modulo p. For any integer x, x mod p refers to
the integer remainder r that obtained upon dividing x by p. This operation is called
reduction modulo p. In this case, the remainder r is the distinct integer element
between 0 and p−1, i.e. 0≤ r≤p−1 [2]. The arithmetic operations of elements
over GF(p) are performed as the following example (1).

Example (1). (prime field GF(23)) The elements of GF(23) are {0,1,2,…,23}. The
following examples demonstrate for arithmetic operations of elements in GF(23).

• Addition: 20+10 (mod 23)�7 since 30 mod 23�7.
• Subtraction: 10−20 (mod 23)�13 since 10 +(−20) mod 23�13.
• Multiplication: 20 · 10 (mod 23)�6 since 200 mod 23�6.
• Inversion: 10−1 (mod 23)�7 since 10 · 7 mod 23�1.
• Division: 20/10 (mod 23)�2 since 20. 10−1(mod 23) and 20. 7 (mod 23)�2.

Binary Field. A finite field of order 2 m is called binary field signified byGF(2m).
It also refers to the finite field with characteristic-two. The elements overGF(2m) can
be constructed by applying a polynomial basis representation defined by the Eq. (1).
In this case, the elements of GF(2m) are the binary representation polynomials with
degree at most m −1.

GF(2m) � am−1x
m−1 + am−2x

m−2 + · · · + a2x
2 + a1x + a0, ai ∈ {0, 1}. (1)

f (x) is defined as an irreducible binary representation polynomial with degree
m if f(x) cannot be factored as a product of binary representation polynomials
with degree less than m. Let a(x) and b(x) be elements over GF(2m). They are
the binary representation polynomials with degree at most m −1. Addition of ele-
ments in binary field refers to the addition of binary representation polynomials, that
is,a(x)⊕b(x).Multiplication of elements inGF(2m) refers to refers to the expression
a(x)× b(x) mod f (x). Let c(x) � a(x)× b(x) and c(x) be an binary representation
polynomial with degree more than m. The result of the expression c(x) mod f(x)
refers to the unique remainder polynomial r(x) with degree less than m that obtained
upon the division of c(x) by f(x); this operation is called reduction modulo f(x).Divi-
sion of elements in GF(2m) refers to refers to the expression a(x)/b(x) mod f (x).
In this case, the division of elements in GF(2m) is calculated as the expression
a(x) × b(x)−1 mod f (x) [2]. The arithmetic operations of elements over GF(2 m)
are performed as the following example (2).

Example (2). (binary field GF(2m)) The elements of GF(2m) generated by the
polynomial f (x) � x4 + x + 1 are represented by 16 binary polynomials of degree
at most 3 as shown in Table (1).
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Table 1 Binary representation polynomials

Polynomial Polynomial Polynomial Polynomial

0 x2 x3 x3 + x2

1 x2 + 1 x3 + 1 x3 + x2 + 1

x x2 + x x3 + x x3 + x2 + x

x + 1 x2 + x + 1 x3 + x + 1 x3 + x2 + x + 1

The followings are some examples of arithmetic operations in GF(24 ) with the
elements generated by reduction polynomial f (x) � x4 + x + 1.

• Addition: (x3 + 1) + (x + 1) � x3 + x since (x3 + 1) ⊕ (x + 1) � x3 + x .
• Subtraction: (x3 + 1) − (x + 1) � x3 + x since (x3 + 1) ⊕ (x + 1) � x3 + x .
• Multiplication (x3 + 1).(x + 1) � x3 since (x3 + 1)× (x + 1) � x4 + x3 + x + 1 and
(x4 + x3 + x + 1) mod f (x) � x3.

• Inversion: (x + 1)−1 � x3 + x2 + x since (x3 + x2 + x) × (x + 1) mod f (x) � 1.
• Division: (x3+1)/(x +1) � x2+x+1 since (x3+1)×(x+1)−1 mod f (x) � x2+x+1

3 Elliptic Curve Arithmetic

The elliptic curve over finite field E(GF) is a cubic curve defined by the general
Weierstrass equation: y2 + a1xy + a3y � x3 + a2x2 + a4x + a6 over GF where
ai ∈ GF and GF is a finite field. We study elliptic curves over GF(p) and GF(2m).

3.1 Elliptic Curve Arithmetic Over Prime Field -GF(P)

Elliptic curves are driven from the general Weierstrass equation. The elliptic curve
E(GF(p)) over GF(p) is determined by the Eq. (2) [4]:

y2 � x3 + ax + b, (2)

where p>3 is a prime and a, b ∈ GF(p) satisfy that 4a3 + 27b2 �� 0. (a1 �a2 �a3
�0; a4 �a and a6 �b corresponding to the general Weierstrass equation)

Points on E(GF(p)). The elliptic curve E(GF(p)) over GF(p) belongs to a set of
points together with a point at infinity signified by symbol O. In this case,{P �
(x, y)|y2 � x3 + ax + b; x, y, a, b ∈ GF(p)}. Every point on the curve generally
has its corresponding inverse. The inverse of a point (x, y) on E(GF(p)) is defined as
(x, -y). The number of points on the curve, including a point at infinity, is defined as
its order #E. The points on E(GF(p)) are generated by using Algorithm (1).
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(0, 2) (0, 11)
(1, 6) (1, 7)
(2, 3) (2, 10)
(4, 6) (4, 7)
(6, 4) (6, 9)
(8, 6) (8, 7)
(10, 1) (10, 12)
(11, 5) (11, 8)

(a) Points (b) Graph

Fig. 1 Points on E : y2 � x3 + 5x + 4

Example (3). Let p�13 and consider the elliptic curve E : y2 � x3 + 5x + 4 over
GF(13) where a=5 and b=4. Note that 4a3 + 27b2 � 500+ 432 � 932 mod 13 � 9,
so E is indeed an elliptic curve. The points on the curve and its graph are shown in
Fig. (1a and b). The order of the elliptic curve E : y2 � x3 + 5x + 4 over GF(13) is
17.

Arithmetic Operations on E(GF(p)). Addition of two points on an elliptic curve
E(GF(p)) applied the chord-and-tangent rule to find a third point on the curve.
The addition operation with the points on E(GF(p)) generates a group with point at
infinity O serving as its identity. It is the group of points on E(GF(p)) that is used in
the construction of elliptic curve cryptosystems [5]. It is the best way to explain the
point addition rule geometrically. Let P � (x1, y1) and Q � (x2, y2) be two distinct
points on E(GF(p)). Assume that the point R � (x3, y3) is obtained by addition of
P and Q. This point addition is illustrated in Fig. (2a). The line connecting through
P and Q intersects the elliptic curve at the point called -R. R is the reflection of -R
with respect to the x-axis. Assume that doubling of P is R � (x3, y3) in the case of
P � (x1, y1). This point doubling is illustrated in Fig. (2b). The tangent line drawing
from point P intersects the elliptic curve at the point called -R. R is the reflection of
-R with respect to the x-axis as in the case of addition.
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Fig. 2 a Addition. (R �P +Q). b Doubling. (R �P +P)

The geometric description open following algebraic methods for the addition of
two points and the doubling of a point [4].

1. P +O �O +P �P for all P ∈ E(GF(p)).
2. If P � (x, y) ∈ E(GF(p)), then (x, y) + (x,−y) � o where the point (x, -y) is

signified by (-P) that is called the inverse of P.
3. (Point addition). Let P � (x1, y1) ∈ E(GF(p)) and Q � (x2, y2) ∈ E(GF(p)),

where P �� ±Q. Then P + Q � (x3, y3), where x3 � λ2 − x1 − x2 and
y3 � λ(x1 − x3) − y1. In this case, λ � (y2 − y1)/(x2 − x1).

4. (Point doubling). Let P � (x1, y1) ∈ E(GF(p)), where P �� −P . Then 2P �
(x3, y3), where x3 � λ2 − 2x1 and y3 � λ(x1 − x3) − y1. In this case, λ �
(3x21 + a)/2y1.

Example (4). (elliptic curve addition and doubling) Let us consider the elliptic
curve defined in Example (3).

• Addition. Let P� (1, 6) and Q� (4, 6). Then P+Q� (8, 7).
• Doubling. Let P� (1, 6). Then 2P� (10, 1).
• Inverse. Let P� (1, 6). Then –P� (1, 7).

3.2 Elliptic Curve Arithmetic Over Binary Field - GF(2 M)

Elements over GF(2 m) must be firs generated by using a reduction polynomial f(x).
These elements are applied to construct an elliptic curve E(GF(2 m)) over GF(2 m).
The curve E(GF(2 m)) is determined by the Eq. (3) [4]:

y2 + xy � x3 + ax + b. (3)

where a, b ∈ GF(2m) and b �� 0.
Points on E(GF(2 m)). The elliptic curve E(GF(2 m)) over GF(2 m) belongs to

a set of points together with a point at infinity signified by symbol O. In this case,
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Table 2 Binary and polynomial representations for elements of GF(24)

Binary Polynomial Binary Polynomial Binary Polynomial Binary Polynomial

0000 0 0100 x2 1000 x3 1100 x3 + x2

0001 1 0101 x2 + 1 1001 x3 + 1 1101 x3 + x2 + 1

0010 x 0110 x2 + x 1010 x3 + x 1110 x3 + x2 + x

0011 x + 1 0111 x2 + x + 1 1011 x3 + x + 1 1111 x3+x2+x+1

{P � (x, y)|y2 + xy � x3 + ax + b; x, y, a, b ∈ GF(2m)}. Every point on the
curve has its corresponding inverse. The inverse of a point (x, y) on E(GF(2 m)) is
defined as (x, x⊕ y). The number of points on the curve, including a point at infinity,
is generally called its order #E. The points on E(GF(2 m)) are generated by using
Algorithm (2).

Example (5). Let f (x) � x4 + x +1 be the reduction polynomial. Then binary and
polynomial representations for 16 elements of GF(24) generated by the reduction
polynomial f (x) � x4 + x + 1 are shown in Table (2).

Table (3) shows the power representations of g and corresponding binary repre-
sentations for elements of GF(24) generated by the reduction polynomial f (x) �
x4 + x + 1. The element of g� (0010) is a generator of GF(24) and its order is 15 (24

– 1).
The elliptic curve E : y2 + xy � x3 + g11x + g13 where a � g11 and b � g13

belongs to the points on the curve, as shown in Fig. (3). The points on the curve and
its graph are shown in Fig. (3a and b). The order of the elliptic curve E : y2 + xy �
x3 + g11x + g13 is 22.

Arithmetic Operations on E(GF(2 m)). Addition of two points on an elliptic
curve E(GF(2 m)) also applied the chord-and-tangent rule to find a third point on
the curve. The addition operation with the points on E(GF(2 m)) generates a group
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Table 3 Power and binary representations of elements of GF(24)

Power Binary Power Binary Power Binary Power Binary

g 0010 g5 0110 g9 1010 g13 1101

g2 0100 g6 1100 g10 0111 g14 1001

g3 1000 g7 1011 g11 1110 g15 0001

g4 0011 g8 0101 g12 1111

),0( 14g O

),1( 7g ),1( 9g

),( 8gg ),( 10gg

)0,( 2g ),( 22 gg

)0,( 5g ),( 55 gg

)0,( 6g ),( 66 gg

),( 78 gg ),( 118 gg

)1,( 9g ),( 79 gg

),( 412 gg ),( 612 gg

)1,( 13g ),( 613 gg

)1,( 14g ),( 314 gg
0
1

g

g 2

g 3

g 4

g 5

g 6

g 7

g 8

g 9

g 10

g 11

0 1 g g 2 g 3 g 4 g 5 g 6 g 7 g 8 g 9 g 10 g 11
x

y O

g 12

g 13

g 14

g 15

g 12 g 13 g 14 g 15

(a) Points (b) Graph

Fig. 3 Points on E : y2 + xy � x3 + g11x + g13

with point at infinity O serving as its identity. It is the group of points on E(GF(2 m))
that is used in the construction of elliptic curve cryptosystems [5]. The followings
are algebraic methods for the addition of two distinct points and the doubling of a
point [4].

1. P +O �O +P �P for all P ∈ E(GF(2m)).
2. If P � (x, y) ∈ E(GF(2m)), then (x, y) + (x, x + y) � O where the point (x,

x+y) signified by (-P) is called the inverse of P.
3. (Point addition). Let P � (x1, y1) ∈ E(GF(2m)) and Q � (x2, y2) ∈

E(GF(2m)), where P �� ±Q. Then P + Q � (x3, y3), where x3 � λ2 + λ + x1 +
x2 + a and y3 � λ(x1 + x3) + x3 + y1. In this case, λ � (y2 + y1)/(x2 + x1).

4. (Point doubling). Let P � (x1, y1) ∈ E(GF(2m)), where P �� −P . Then
2P � (x3, y3), where x3 � λ2 + λ + a and y3 � x21 + λx3 + x3. In this case,
λ � x1 + (y1/x1).

Example (6). (elliptic curve addition and doubling) Let’s consider the elliptic
curve defined in Example (5).
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• Addition. Let P � (g2, g2) and Q � (g6, g6). Then P + Q � (g5, 0).
• Doubling. Let P � (g2, g2). Then 2P � (g14, 1).
• Inverse. Let P � (g2, g2). Then −P � (g2, 0).

3.3 Elliptic Curve Discrete Logarithm Problem

The complexity of solving ECDLP determines the security of ECC. Let P and Q be
the points on an elliptic curve such that Q=kP, where k is an integer number. k is
called the discrete logarithm of Q to the base P. Known two points, P and Q, it is
unable to compute k, when the group order of the points is enough large.

Point Multiplication. Point Multiplication is a major operation usually used in
ECC. The scalar multiplication operation of a integer scalar k with a point P on the
elliptic curve creates another point Q on this curve [1]. The point Q is gotten by
performing point addition and point doubling operations according to bit sequence
patterns of integer scalar k. The bit sequence patterns of integer k is shown as the
Eq. (4)

k � kn−12
n−1 + kn−22

n−2 + n + k1 + k0, (4)

where kn−1 � 1 and ki ∈ {0, 1}, i � 0, 1, 2, . . . , n−1. This operation is based on the
binary method which scans the bit sequence patterns of k either from left-to-right
or right-to-left [2]. The Algorithm-3 illustrates the scalar multiplication operation
of a integer scalar k with a point P on the elliptic curve using binary method. This
method can be applied for both elliptic curves over GF(p) and GF(2 m).

The cost of this point multiplication method relies on the number of 1 s in bit
sequence patterns of integer scalar k. The number of 1 s is called theHammingWeight
of the scalar. Generally, this method performs (n − 1) point doublings and (n − 1)/2
point additions. For each bit .1., this method must perform both point doubling and
point addition, if the bit is .0., this method performs only point doubling operation.
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Consequently, making less the number of 1 s in bit sequence patterns of integer scalar
k will increase the speed of scalar multiplication of a point on elliptic curve [6].

The Order of Point. Let P ∈ E(GF(p)). The order of point P is defined as the
smallest positive integer value N such that NP=O. In this case, O is the identity of
the group of points on the elliptic curve.

p + 1 − 2
√
p ≤ N ≤ p + 1 + 2

√
p. (5)

All different values of N must be tried in the range defined in the Eq. (5) [7] and
then check which value of N agrees this statement NP=O.

Example (7). Let E be the elliptic curve E : y2 � x3 + 5x + 4 over GF(13). The
order of point (1, 7) is 17. TheEq. (5) is solved as 13+1−2

√
13 ≤ N ≤ 13+1+2

√
13.

All different values of N in the range, 7 ≤ N ≤ 21, could be tried to find N � 17
such that NP=O. Therefore, N � 17.

4 General Methods of Attacking on ECDLP

The complexity of solving the Discrete Logarithm Problem (DLP) is deeply impor-
tant for the security of PKC. PKC is constructed based on the assumption that the
DLP is extremely difficult to compute; the more difficult it is, the more security it
supports. Therefore, PKC is constructed on a larger group order under large integer
in order to increase the complexity of solving the DLP.

General methods of attacking on the ECDLP can be classified into three groups
as following [8]. These methods can solve the ECDLP under small integer.

1. Methods stand on random walks, such as the exhaustive search method and the
Baby-Step, Giant-Step method,

2. Methods stand on random walks with special conditions, like Pollard’s rho
method and Pollard’s lambda method, and

3. Methods stand on multiplicative groups, such as the Index Calculus method and
Pohlig–Hellman method.

We studied the following general methods of attacking on the ECDLP.

4.1 Baby-Step, Giant-Step Method

Let P, Q ∈ E . Assume that we solve an integer scalar k such that Q � [k]P and P
has prime orderN . At first, wemust compute the orderN ofP. This method generally
performs about

√
N steps and requires about

√
N storage. Therefore, this method

only works well for memory storage size N . This method follows the procedure
below [7].
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1. Fix an integer m such that m �
⌈√

N
⌉
and compute mP.

2. Compute and store a list of iP for 1 ≤ i ≤ m.
3. Compute the points such that Q − jmP for j � 0, 1, . . . until one of resulting

points matches one from the stored list.
4. If i P � Q − jmP , then Q � kP with k ≡ i + jm(modN ).

The list of points i P are calculated by adding P to (i − 1)P . It is the baby-step.
The list of points Q − jmP are computed by adding −mP to Q − ( j − 1)mP . It
is the giant-step. This method may generally perform about m steps to find a match

and its time complexity is O
(√

N
)
[7].

4.2 Pollard’s Rho Method

Let P, Q ∈ E . Assume that we solve an integer scalar k such that Q � [k]P where
P has prime order N and Q ∈< P >. This method generally find two different pair
of integers: (a, b) and

(
a′, b′) modulo N such that [a]P + [b]Q � [a′]P + [b′]Q.

This method follows the procedure below [7]:

1. Select a, b ∈ [0, N − 1] uniformly at random.
2. Compute [a]P +[b]Q.
3. Store the triple (a, b, [a]P +[b]Q).
4. Select new pairs

(
a′, b′) uniformly at random such that (a, b) �� (

a′, b′).
5. Compute [a′]P + [b′]Q.
6. Store the new triple (a′, b′, [a′]P + [b′]Q).
7. Compute and Check the new triple against all previously stored triples until we

find a pair
(
a′, b′) satisfied with the Eq. (6).

8. Compute k ≡ (a − a′)(b′ − b)−1 mod N .

[a]P + [b]Q � [a′]P + [b′]Q (6)

The time complexity of this method is O
(√

πN/2
)
[7]. The diagram of the

sequence of resulting points looks like the Greek letter ρ. Therefore, this method is
called the Pollard-Rho method.

4.3 Pohlig–Hellman Method

Let P, Q ∈ E . Assume that we solve an integer scalar k such that Q � [k]P where
P has prime order N.

N �
∏

i
qei
i (7)
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The main idea of this method is as following:

• Compute the order N of P.
• Compute prime factorization of N that satisfied the Eq. (7).
• Compute k(modqei

i ) for each i,
• Combine them to obtain k (mod N) using the Chinese Remainder theorem [9].

Let q be a prime, and let qe be the exact power of q dividing N . This method
defines k in its base q expansion as the Eq. (8).

k � k0 + k1q + k2q
2 + n (8)

where 0 ≤ ki < q. This method evaluates k(modqe
i ) by successively determining

k0, k1, k2, n, ke−1. This method follows the procedure below [7]:

1. Compute T � j.
(

N
q .P

)
, 0≤ j≤q-1.

2. Compute N
q .Q. It is an element of k0

(
N
q .P

)
of T .

3. If e � 1, stop. Otherwise, continue.
4. Let Q1 � Q − k0P .

5. Compute N
q2 .Q. It is an element of k1

(
N
q2 .P

)
of T.

6. If e � 2, stop. Otherwise, continue. Assume that we have calculated:
k1, k2, n, kr−1 and Q1, Q2, n, Qr−1.

7. Let Qr � Qr−1 − kr−1qr−1P .

8. Determine kr such that N
qr+1 .Qr � kr

(
N
q .P

)
.

9. If r � e − 1, stop. Otherwise, return to step (7).

Then the method computes k ≡ k0 + k1q + n + ke−1qe−1(modqe). Therefore,
early we find k1. In the same way, the method produces k2, k3,n .We must stop after
r � e − 1. The time complexity of this method is O

(√
q
)
[7]. In this case, q is the

largest prime divisor of N. In practice this method becomes infeasible as a result of
that N has a large prime divisor. Then it becomes difficult to make and store the list
T to find matches.

5 Attack Experiments

We implemented well-known general common attacks such as Baby-Step Giant-
Step method, Pollard’s rho method and the Pohlig–Hellman method by using our
implementations of finite field arithmetic operations [10] and elliptic curve arithmetic
operations [11] under java BigInteger class.
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5.1 Baby-Step Giant-Step Attack

Prime Field. Let an elliptic curve be E : y2 � x3 + 5x + 4 over GF(13), P � (0, 2)
and Q � (6, 4).Assume thatwe solve an integer scalar k such that Q � [k]P byusing
Baby-Step, Giant-Step method. P has order 17. We first compute m � |√17|� 5.
The points iP for 1 ≤ i ≤ 5 are:

(0, 2), (4, 6), (10, 1), (6, 9), (8, 6).

We calculate Q − jmP for j � 0, 1, 2, 3, . . . and obtain:

(6, 4), (11, 8), (10, 1), (4, 7), (1, 6)

at which point we stop since this third point matches 3P . Since j � 2 yielded the
match, we got:

(6, 4) � (3 + 2.5)P � 13P.

Therefore k � 13.
Binary Field. Let an elliptic curve be E : y2 + xy � x3 + g11x + g13 over GF(24),

P � (g9, 1) and Q � (g6, g6). Assume that we solve an integer scalar k such that
Q � [k]P by using Baby-Step, Giant-Step method. P has order 11. We first compute

m �
⌈√

11
⌉

� 4. The points iP for 1 ≤ i ≤ 4 are:

(g9, 1), (g12, g4), (g6, 0), (g14, 1).
We calculate Q − jmP for j � 0, 1, 2, 3, 4, . . . and obtain:
(g6, g6), (g14, 1), O, (g14, g3), (g6, 0).
at which point we stop since this second point matches 4P . Since j � 1 yielded

the match, we got:

(g6, g6) � ((4 + 1.4) mod 11)P � 8P.

Therefore k � 8.

5.2 Pollard’s Rho Attack

Prime Field. Let an elliptic curve be E : y2 � x3 + 5x + 4 over GF(13), P � (0, 2)
and Q � (6, 4). Assume that we solve an integer scalar k such that Q � [k]P by
usingPollard’s rhomethod. The pointP has prime order 17.We choose a, b ∈ [0, 17]
uniformly at random, compute R � [a]P + [b]Q and keep the triple (a, b, R) in the
memory until we meet an another triple (a′, b′, R′) such that R � R′ or R � −R′.
Table (4) shows computing data used for Pollard’s rho attack on E : y2 � x3 +5x +4
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Table 4 Data for Pollard’s
rho attack on
E : y2 � x3 + 5x + 4 over
GF(13)

[a] [b] R� [a]P+ [b]Q

5 12 (11, 8)

3 8 (8, 6)

10 4 (2, 3)

6 11 (6, 4)

2 7 (11, 8)

1 15 (11, 5)

Table 5 Data for Pollard’s
rho attack on
E : y2 + xy � x3 + g11x + g13

over GF(24)

[a] [b] R� [a]P+ [b]Q

10 5 (g13, 1)

8 3 (g9, g7)

4 10 (g14, g3)

5 6 (g12, g6)

7 4 (g13, 1)

2 7 (g6, 0)

over GF(13). We have that [5]P + [12]Q � [2]P + [7]Q. Then k � (5 − 2)(7 −
12)−1 mod 17; k � 3(−5)−1 mod 17; k � 3.10 mod 17; Hence k � 13.

Binary Field. Let an elliptic curve be E : y2 + xy � x3 +g11x +g13 over GF(24),
P � (g9, 1) and Q � (g6, g6). Assume that we solve an integer scalar k such that
Q � [k]P by using Pollard’s rho method. The point P has prime order 11. We
choose a, b ∈ [0, 11] uniformly at random, compute R � [a]P + [b]Q and keep the
triple (a, b, R) in the memory until we meet an another triple (a′, b′, R′) such that
R � R′ or R � −R′. Table (5) shows computing data used for Pollard’s rho attack on
E : y2+xy � x3+g11x+g13 overGF(24).We have that [10]P+[5]Q � [7]P+[4]Q.
Then k � (10−7)(4−5)−1 mod 11; k � 3(−1)−1 mod 11; k � 3.10 mod 11;Hence
k � 8.

5.3 Pohlig–Hellman Attack

Prime Field. Let an elliptic curve be E : y2 � x3 + 77x + 28 over GF(157),
P � (9, 115) and Q � (2, 70). Assume that we solve an integer scalar k such that
Q � [k]P by using Pohlig–Hellman method. The order N of point P is 162. The
prime factorization of N is 2.34. We compute k mod 2, and mod 81, then recombine
them to obtain k mod 162 using the Chinese Remainder Theorem.

k mod 2. We compute T � {(24, 0)}.
Since N

2 .Q � (24, 0) � 1.( N2 .P), we have k0 � 1.
Therefore k ≡ 1(mod2).
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k mod 81. We compute T � {(57, 41), (5, 99), (57, 116), O}.
Since N

3 .Q � (57, 41) � 1.( N3 .P), we have k0 � 1.
Therefore Q1 � Q − 1.P � (5, 99).
Since N

9 .Q1 � O � 0.( N3 .P), we have k1 � 0.
Therefore Q2 � Q1 − 0.3.P � Q1.
Since N

27 .Q2 � (57, 116) � 2.( N3 .P), we have k2 � 2.
Therefore Q3 � Q2 − 2.9.P � (57, 41).
Since N

81 .Q3 � (57, 116) � 2.( N3 .P), we have k3 � 2.
Therefore k � 1 + 0.3 + 2.9 + 2.27 ≡ 73(mod81).
We now have the simultaneous congruence:
k ≡1 (mod 2)
k ≡73 (mod 81).
Then we obtain k=73 using the Chinese Remainder theorem to recombine simul-

taneous congruences as following:

M1 = 162/2 = 81.

y1 � M−1
1 mod 2 � 1.

M2 = 162/81 = 2.

y2 � M−1
2 mod 81 � 41.

k � 1.(81).1 + 73.(2).41( mod 162) � 73.

Binary Field. Let an elliptic curve be E : y2 + xy � x3 +g11x +g13 over GF(24),
P � (g2, g2) and Q � (g6, g6). Assume that we solve an integer scalar k such that
Q � [k]P by using Pohlig–Hellman method. The order N of point P is 22. The
prime factorization of N is 2.11. We compute k mod 2, and mod 11, then recombine
them to obtain k mod 22 using the Chinese Remainder Theorem.

k mod 2. We compute T � {O}.
Since N

2 .Q � O � 0.( N2 .P), we have k0 � 0.
Therefore k ≡ 0(mod2).
k mod 11. We compute T � {(g13, g6)}.
Since N

11 .Q � (g13, g6) � 4.( N11 .P), we have k0 � 4.
Therefore k ≡ 4(mod11).
We now have the simultaneous congruence:
k≡0 (mod 2)
k≡4 (mod 11).
Then we obtain k=4 using the Chinese Remainder theorem to recombine simul-

taneous congruences as following:
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Table 6 Time complexity Attacks Expected running time

Baby-Step Giant-Step O(
√
N )

Pollard’s rho O(
√

πN/2)

Pohlig–Hellman O(
√
q)

M1 = 22/2 = 11.

y1 � M−1
1 mod 2 � 1.

M2 = 22/11 = 2.

y2 � M−1
2 mod 11 � 6.

k � 0.(11).1 + 4.(2).6( mod 22) � 4.

6 Conclusion

The security strong point of ECC relies on the complexity of solving ECDLP for a
cryptanalyst to find the secret key k such that Q � kP . The Table (6) summarizes
time complexity of general methods of attacking on ECDLP. Our research found
that these attacking methods can solve ECDLP within the corresponding expected
running time when the group order N of the elliptic curve is not enough large and its
prime factorization is composed of smooth primes.

When implementing the ECC, the following several classes of elliptic curves
should be applied in order to gain the maximum security level of the cryptosystems.
The National Institute of Standards and Technology (NIST) issued several classic
elliptic curves with larger key sizes for federal government use.

NIST recommends the 15 elliptic curves: five elliptic curves over GF(p) where p
equals 192, 224, 256, 384, and 521 bits and five elliptic curves over GF(2m) where
m equals 163, 233, 283, 409, and 571. For each of the binary fields, one Koblitz curve
is recommended [12]. Thus, NIST issue contains a total of five prime curves and ten
binary curves. These curves should be selected for best security and implementation
efficiency. The group order for each of these curves is enough large and has large
prime factors. Therefore, these curves are resistant to the attacking methods we
studied in the Sect. 4.
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